LAPCOD
Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics
LAPCOD VII :: Venice 2019 :: 17-21 June 2019
LAPCOD Home
Venice 2019
Travel Information
Tourist Information





<< Previous Abstract | ThM11 | ThM12 | ThM13 | ThM14 | ThM21 | ThM22 | ThM23 | ThM24 | Next Abstract >>

Lagrangian stability of the Malvinas Current

Francisco J. Beron-Vera
RSMAS, University of Miami
(Abstract received 03/26/2019 for session B)
ABSTRACT

Deterministic and probabilistic tools from nonlinear dynamics are used to assess enduring near-surface Lagrangian aspects of the Malvinas Current. The deterministic tools are applied on a multi-year record of velocities derived from satellite altimetry data, revealing a resilient cross-stream transport barrier. This is composed of shearless-parabolic Lagrangian coherent structures (LCS), which, extracted over sliding time windows along the multi-year altimetry-derived velocity record, lie in near coincidental position. The probabilistic tools are applied on a large collection of historical satellite-tracked drifter trajectories, revealing weakly communicating flow regions on either side of the altimetry-derived barrier. Shearless-parabolic LCS are detected for the first time from altimetry data, and their significance is supported on satellite-derived ocean color data, which reveal shapes that quite closely resemble the peculiar V shapes, dubbed “chevrons,” that have recently confirmed the presence of similar LCS in the atmosphere of Jupiter. Finally, using in-situ velocity and hydrographic data, conditions for symmetric stability are found to be satisfied, suggesting a duality between Lagrangian and Eulerian stability for the Malvinas Current. (Joint work with N. Bodnariuk, M. Saraceno, M. Olascoaga and C. Simionato; support provided by ONR Global.)